3D Printer: Difference between revisions

From All Hands Active Wiki
Jump to navigation Jump to search
Nova1313 (talk | contribs)
No edit summary
Xey (talk | contribs)
restructured the 3D printer page & adding detailed steps on each part of a 3d print.
Tag: 2017 source edit
 
(165 intermediate revisions by 15 users not shown)
Line 1: Line 1:
[[Category:Tools]]
[[Category:Tools]]
[[Category:Electronics Tools]]
[[Category:Requires Maintenance]]
[[Category:Requires Maintenance]]
AllHandsActive has two Makerbot Industries Cupcake series 3D Printers. The printers are both heavily modified from their original state so aside from the chasis saying Cupcake, refer to documentation shown below.
{{Incomplete}}


==3D Printer workstation==
AHA currently has four 3D printers.
===About===
A small netbook (host name: FLICKY) sits with the 3D printers. Use the 'AHA' login with the usual back room password. ReplicatorG is installed (on desktop) and setup for use with Creamcheese. It has an SD card slot so you can also use it to build to card and print from that. Feel free to use the netbook and take it along when you transport printers. Unplug and shut down when not using it. No need to burn out the power supply/battery.


===Known issues===
Ender 3 printers -
Replicatorg loads full screen, right click on program in XFCE top bar and say always on top, this will then put the window in the right place and allow you to resize. Alternatively attach a larger monitor.
*[[Ender 3 - Bert]]
*[[Ender 3 - Ernie]]
*[[Ender 3 v2 - Oscar]]


===Maintenance and upgrades===
Ender 5 printer
Machine is maintained by: Tyler W.
*[[Ender 5 Plus - Big Bird]]
*This machine does not have the latest Config files for the bots (7/2/12)


==Creamcheese Cupcake==
All of the printers except Oscar are set up to print via [https://octoprint.org/ OctoPrint]. The links to access OctoPrint are available on each of the printers webpages. The Ender 3 printers all use the same [https://www.prusa3d.com/prusaslicer/ PrusaSlicer] config - [[:File:PrusaSlicer config bundle.ini]] (Current as of {{#dateformat: 2023-12-13}}). The Ender 5 uses the profile [[:File:Ender 5.ini]]. These profiles are installed on the dedicated 3D printing computer (located to the left of the 3D printers), but you may download these profiles and access OctoPrint from your own computer while in the space.


===This bots history===
As of {{#dateformat: 2024-09-03}}, only [[Ender 3 - Bert|Bert]] and [[Ender 3 - Ernie|Ernie]] are in service.
This machine started as a Cupcake with Gen3 electronics and Gen3 Extruder. The extruder never worked right and became a hacked version of the DC extruder and a makergear hot end.
The X and Y axis were changed to be quieter and more accurate.
The DC extruder died during a 3D printing talk at Penguicon 2012. We discovered that we cannot easily source many of the parts we originally used and decided to build something that we could repair in the future. We decided on a Stepper extruder with 3MM filament feed as we had many pounds of it sitting around.  


We use Jetty's acceleration firmware (Use slic3r not Skeinforge!) with Rob G's 5D cable hack (similar to just using the 5D shield). Recently we added 3 pololu stepper drivers on the A, X and Y axis allowing us to push the machine a bit faster.
==Operation==


===Things this bot has:===
==== Prerequisites ====
*Gen3 Electronics (V2.x Steppers x 3, Motherboard RepRap v1.2, Extruder controller 2.2)
You will need:
*[http://store.makerbot.com/nema-17-cork-gasket-pack.html NEMA 17 Cork Gaskets] - Cuts down on noise
*Extra Stepper driver for extruder (Makerbot V2.x)
*Ugly cable hack [http://store.makerbot.com/3g-5d-shield-for-cupcake.html does this], looks like [http://www.thingiverse.com/derivative:13984]
*[http://wiki.makerbot.com/jetty-firmware Jetty Firmware]
*[http://thingiverse.com/thing:7129 MiseryPusher Extruder]
*Custom designed [http://www.thingiverse.com/thing:23000 toolhead holder]
*[http://thingiverse.com/derivative:9549 Mendel X and Y low rider Axis]
*[http://store.makerbot.com/relay-board-mount-kit.html Relay mount kit]
*[http://store.makerbot.com/relay-board-kit-v1-0.html Relay board kit]
*[http://store.makerbot.com/makerbot-cupcake-heated-build-platform-v2-0.html MB Heated Build Platform]
*Makergear Groovemount insulator
*Modular thermistor
*Modular heater core
*36MM Brass barrel
*.35MM nozzle.
*Kysan 13.6:1 Stepper Motor (the same that Makergear.com sells)
*3x Pololu 1/16th step stepper drivers
*[http://www.thingiverse.com/thing:4526 PSMD board for new stepper drivers]


===How Do I run Creamcheese? (UPDATED 8/7!)===
* An STI file of what you'd like to print, or pre-sliced GCODE file using the proper printer profile on a slicer such as [https://www.prusa3d.com/prusaslicer PrusaSlicer]
Once you have the bot configured, but before printing.... move the nozzle up and run the extruder manually from ReplicatorG to ensure it is feeding properly. This only needs to be done for the first print or after changing colors.
* Filament, or use one of our own.


* Get ReplicatorG 0029 R2 (MUST BE THIS VERSION, NOT NEWER!) - [http://www.thingiverse.com/thing:17855 Jetty custom version] or from [http://code.google.com/p/replicatorg/downloads/list Google Code Listing]. If you get the non-jetty version you cannot enable and disable acceleration. This is fine if you just plan to use the basic settings.
=== Check printer is not in use ===
* Get [http://slic3r.org/ Slic3r]
Ensure that nothing is currently being printed, and that the bed is clear.
* Get the Creamcheese config files from here: [http://novaslp.net/download/makerbot/AHAMakerbotSettings120702.zip Tyler's repository of cool stuff!] - UPDATED 8/* (THESE ARE NOT YET PUBLISHED AS OF 8/7!)
* Put the *.xml files in your replicatorg machines directory
* Put the config.ini in your Slic3r directory.


====Printing with Slic3r (supported!)====
* Start Slic3r
* Press load config (pick the config.ini)
* Under Print Settings, Fill Density insert a fractional value for infill (.35 works well)
* Under platter drag your STL files in or use the Add button. Move things so they will fit.
* Press export GCode.
* Open ReplicatorG and connect to CreamCheese with machine type CreamCheese - Slic3r (supported)
* File->Open and pick your newly generated GCode file
* Pick build to file
* Save the resulting .s3g to an SD card with a filename no longer than 7 character.
* Put the SD card in the bot
* In ReplicatorG pick build from file and pick the file in the list.
* Remove print when finished.


====Printing with Skeinforge (Experimental)====
=== Clean the bed ===
We no longer support using Skeinforge with Creamcheese. If you want to use it you can, but be aware you are on your own


* Follow the standard Creamcheese instructions
If the bed is not clean, you'll want to clear it off. If there is an existing print, carefully remove a print. This is likely another member's print, so please set it carefully aside and take note of where you put it so they can find it when they come to pick it up.
* Put the folders (ex. SF40-Cupcake-3mm-.35SD) folders in your sf_40_profiles folder. On linux this is in a hidden home folder directory (ex: /home/worman/.replicatorg/sf_40_profiles
* Connect to Creamcheese using machine type "CreamCheese - Skeinforge (Experimental)
* Use Replicatorg to disable acceleration by sending "M209 S0" twice (make sure you do it twice!)
* In Machine->Motherboard On Board settings turn off Inverse A Axis.
* Reset the motherboard
* In Replicatorg, GCode->GCode Generator pick Skeinforge 40 (Experimental)
* Use the following settings when you generate GCode...
** Base Profile: SF40-Cupcake-3mm-.35SD (if you put the config in the right place this will show up). The SD version is setup to print from an SD card.
** Raft: Your choice, on or off.
** Support Material: Your choice, on or off
** Use Print-O-Matic: YES!
** POM-Settings-Object Infill: 30% (Less and you get a hollower object, more and it is more solid.)
** POM-Settings-Layer Height (mm): 0.25 (Smaller and bot moves faster stretching the plastic, larger and it will tell you can it can't print thick layers because of nozzle size)
** POM-Settings-Number of shells: 2 (How many solid outer layers you get)
** POM-Settings-Feedrate (mm/s): Variable. 35 is a good slow number, 45 is decently quick.. in theory if belts don't slip and the bot doesn't shake too much we can run around 70-80mm/s.
** POM-Plastic-Material type: ABS
** POM-Plastic-Filament Diameter (mm): 2.94 (This should be an average thickness of the filament you feed in. It does vary by color and over lengths of filament. You might want to play with this when changing colors. Measure every 6 inches to a foot and average..)
** POM-Extruder-Nozzle Diameter(mm) - .35
** POM-Extruder-Drive Gear Diameter(mm) - 10.58
* Print, maybe successfully.
* When finished re-invert the A Axis and send M209 S3 twice to turn the acceleration back on for the next person.


===FAQ===
=== Remove existing filament from the printer===
* What happened to Skeinforge/Why do I need Slic3r? It was much easier to get good prints from Slic3r and generating Gcode is faster. ReplicatorG doesn't have great documentation but we provide files you can use to set it up for non-accelerated prints. In theory all you need to do is change the feed rates to something higher with acceleration but it didn't produce good prints.
* Why can I no longer print over the USB cable? We added the 1/16th step drivers and it creates a lot of traffic that the USB cable link can't handle for parts with lots of little tight corners. We provide the non SD profile just in case you are printing a really big 100% infill box with no tiny motions that you really want to print over the USB cable but really just use the SD card.
* But a USB cable is super fast! What gives? The USB cable looks like a USB cable, but it is really a USB to Serial cable. The makerbot talks to the computer over serial and that is significantly slower than the USB maximum.
* My print didn't work. It said it printed but it did nothing. What did I do wrong? Make sure you used a short file name when making the S3G file. Long file names cause the bot to do this.


===Making your own configuration files===
If you're content with the existing filament, you can skip the next two steps.
[[3D_Printer:Creamcheese:Config]] <---How we configured it


===Contact===
=== Pick a filament ===
Questions? Can you borrow it? Break something? Contact one of the following people!
*Tyler W.
*Nate Y.
*Josh W.


We can print PLA and PETG filament types in our shop. We cannot print ABS as we do not have enclosures on our printers.


==BlackBottom Cupcake==
=== Load the filament ===
===This bots history===
This machine started as a Cupcake with Gen3 electronics and Gen5 Extruder. The DC extruder was upgraded by Ox to a Gen5/6+ stepstruder. The bot originally was given a 3G5D board but it never worked well. As a result we did the ugly cable hack.


At some point Ox decided to donate this bot to AHA!
to be expanded


It was renamed from Ox's bot to BlackBottom Cupcake (alternate name for a creamcheese cupcake) on 7/1/12
==== Level the bed ====


===Things this bot has:===
==== Begin the print ====
*Gen3 Electronics + Gen4 stepper for extruder
*Mk6 Stepstruder
*Acrylic Platform
*.40MM Nozzle
*RobG's 3G5D firmware.


===How Do I run BlackBottom Cupcake?===
==== Watch the first few layers ====
'''Printer currently broken: build platform is not flat, heater relay is misbehaving, and firmware is corrupted. We have a new relay on order. Once that comes in, we'll reinstall the firmware, replace the relay board, put on a heated build platform (which we have in the back), and it will work again. If you need to 3D print something in the meanwhile, you should use Creamcheese.'''


Once you have the bot configured, but before printing.... move the nozzle up and run the extruder manually from ReplicatorG to ensure it is feeding properly. This only needs to be done for the first print or after changing colors.
==== Wait. And wait. And Wait. ====


* Get ReplicatorG 0029 R2 (MUST BE THIS VERSION NOT NEWER!) - [http://code.google.com/p/replicatorg/downloads/list Google Code Listing]
==== Remove the print from the print bed ====
* Get the Creamcheese config files from here: [http://novaslp.net/download/makerbot/AHAMakerbotSettings120702.zip Tyler's repository of cool stuff!] - UPDATED 7/2
* Put the *.xml files in your replicatorg machines directory
* Put the folders (ex. SF40-BlackBottom-Cupcake-3mm-.35SD) folders in your sf_40_profiles folder.
** On linux this is in a hidden home folder directory (ex: /home/worman/.replicatorg/sf_40_profiles
** On Windows this is approximately: "\replicatorg-0029_r2\skein_engines\skeinforge-40\skeinforge_application\prefs\"
* Start up replicatorg and pick machine type of BlackBottom Cupcake 3G5D (RPM)
* In Replicatorg: GCode->GCode Generator pick Skeinforge 40 (Experimental)
* Use the following settings when you generate GCode...
** Base Profile: SF40-BlackBottom-Cupcake-3mm-.40SD (if you put the config in the right place this will show up). The SD version is setup to print from an SD card.
** Raft: Your choice, on or off.
** Support Material: Your choice, on or off
** Use Print-O-Matic: YES!
** POM-Settings-Object Infill: 15% (Less and you get a hollower object, more and it is more solid.)
** POM-Settings-Layer Height (mm): 0.30 (Smaller and bot moves faster stretching the plastic, larger and it will tell you can it can't print thick layers because of nozzle size)
** POM-Settings-Number of shells: 2 (How many solid outer layers you get)
** POM-Settings-Feedrate (mm/s): Variable. 35 is a good slow number.
** POM-Plastic-Material type: ABS
** POM-Plastic-Filament Diameter (mm): 2.94 (This should be an average thickness of the filament you feed in. It does vary by color and over lengths of filament. You might want to play with this when changing colors. Measure every 6 inches to a foot and average..)
** POM-Extruder-Nozzle Diameter(mm) - .40 (DIFFERENT FROM CREAMCHEESE)
** POM-Extruder-Drive Gear Diameter(mm) - 10.58
* Click build to file
* Save .s3g file to an SD card (or usb stick and then transfer to SD on the mini computer.) Be sure to use 16 CHARACTERS OR LESS in the file name!!!!
* Put SD card in bot (while it's off or on, doesn't seem to matter).
* In replicatorG tell it to build from file and pick the file from the list.
* Watch it go...


===Contact===
==== Remove and repackage the filament ====
Questions? Can you borrow it? Break something? Contact one of the following people!
*Tyler W.
*Josh W.
*Michael Sh.


==Comments==
* 08/04/2012 ~1230 - ALIVE: Something (not a motor) is making a buzzing noise, usually for <1 second, seems to do it more when the extruder is close to ~220 temp. Maybe the relay? The noise happens both when you are printing, and when you are waiting for printer to come to temp.


* 08/04/2012 ~1530 - DEAD: Angry Black Bottom! One successful 10mm cube print on Black Bottom prior to class.
** Created a 20mmCubePrint, generated GCode, loaded onto SD Card
** Went to print, plastic didn't seem to be adhering to platform
** Lowered head down a bit, it looked to be a bit too high
** Extruder head caught on platform as a result of it being too low.
** Attempted to stop in ReplicatorG, hitting stop button did not change anything
** Turned BlackBottom off via the Motherboard Switch, this stopped it.
** Waited a few minutes, repositioned head, turned Motherboard switch back on, and we get:
*** Three Red Flashes, Pause, Red Flash, Long Pause, Power LED on Motherboard, and green LEDs on other boards light up for a brief second, then all lights are off EXCEPT for a very dim green light on the stepper controller for the extruder.
** Power down, disconnect, reconnect, reset, etc. do not appear to help at all.


* 08/04/2012 ~1640 - ALIVE: After multiple resets, power downs, complete disconnects from power. I turned it on while pulling on the modified wire mashup connected to the RepRap Motherboard (that go down to the Extruder Stepper Controller)
== Historical Content ==
** Wires possibly coming loose from the connection to the pins / shorting out?


==The Replicator==
'''NOTE: most of this information is out of date. I dumped class notes in here for the time being -- they are rough guidelines for how to run the machines, but they are missing a lot of details.''' 
===This Bots History===
This bot was won by Backyard Brains and is for their use only.
===How do I run the Replicator?===
You probably should not (unless you are BYB!). Slice files using Replicatorg's latest version and load them to an SD Card.


Apply new kapton tape to the heated bed if needed. Next, on the Replicator front panel initiate warm up of the primary extruder. Proceed to level the bed using a sheet of paper and the on screen instructions. When this is complete, insert the SD card and select the file you wish to print.
Notes from the 3D printer class: 


==Waynestock==
History:
===This Bots History===
*Not a new technology -- early 3d printers existed in the '80s.
 
Types of printing:
*FDM (Fused Deposition Modeling) / FFF (Fused Filament Fabrication) -- "typical" 3d printers
*SLA (stereolithography) / DLP (Digital Light Processing) -- i.e. resin printers
*SLS (Selective Laser Sintering) / SLM (Selective Laser Melting) -- powdered materials melted with a laser.  Can be used for metal parts;  not consumer-level tech yet.
 
Software:
*3D models are saved in STL
*Machines are controlled with GCODE
*Slicers translate STL models into lines of GCODE
*Cura, PrusaSlicer, Slic3r, Simplify3d are a few slicers
* Lots of parameters you can tune or adjust.  Most are beyond the scope of this class, or open to experimentation.  However, some parameters will frequently be changed to fit your needs, such as brims/skirts/rafts, layer height, shell thickness, infill %, infill type, support materials, bed and nozzle temperatures, and feed rates.
 
Machine anatomy: go over the major parts
 
Filament types: go over some common materials
 
Machine operation:
*Always clean the UNHEATED print bed of old filament bits and dust using a sturdy paper towel or clean, lint-free cloth with 90% isopropyl alcohol on it.  Try to avoid touching the bed after you clean it.
 
*Leveling the bed:
**You will want to do this before every print.
**Make sure bed is heated to printing temperature before leveling
**One printer has a auto-leveling probe (untested), and the other one you will need to use the "paper method".  (Demonstrate the paper method using the octoprint bed leveling helper plugin)
 
* Loading filament:
**Move print head a fair distance from the bed
**Remove from the desiccant zipper bag.  After removing the spool, always re-seal the bag to keep the desiccant packet as dry as possible.
** Check the end of the filament when you pull it out of the bag.  Make sure it's secured in the side of the spool.  If it's not, you will need to try your best to ensure it isn't crossing under another loop to prevent a print failure.
** Feed filament in from the top, push on the spring lever to allow it to be inserted easily.  Continue to push the filament in until the color changes to the new filament's color, or you get a decent flow from the nozzle.
 
* Printing:
**Load the model you want, slice it, and send it to the printer
**Carefully monitor the first layer or two to make sure it has good adhesion
**First layer nozzle height should be close enough to slightly squish the extruded filament into an "oval" profile.  It should not be too far away so as to drop it onto the bed, or so close that it flattens the filament entirely.
**When the print is finished, wait until the bed has cooled completely before trying to remove it -- it should come off more easily when cool.  Try to avoid scraping it off, which can gouge the bed.
 
*Unloading filament:
**Always unload and store filament in its desiccant zipper bag when you're done printing for the day.  If left out, it will begin to absorb moisture from the air, which will cause it to become unusable over time.
**Make sure the print head is heated to the working temperature.
**Push the spring lever in and pull the filament out.  If you encounter any resistance, make sure the nozzle is at the right temperature.
** When unloading the filament, be sure to capture and tuck the loose end securely into the edge of the spool.  If you let it flop loose, it's very likely that it will end up crossing under an adjacent loop, which will cause filament feed issues during its next use!
 
*Finishing up:
**Always ensure the nozzle heater, bed heater, and print cooling fan is turned off before leaving! The hot-end fan will always remain on.
 
Questions? Reach out to board@allhandsactive.org, #3dprinting or #Operations on Matrix.
 
As of 8/24/18:
*[[Ender 3 - Bert]] is available to print
*[[Ender 3 - Ernie]] is available to print
 
 
Older/obsolete information follows, safe to ignore for the most part:
 
==Creating a 3D Model ==
Lots of software exists to create models. As long as the software can export to STL file format, you can print your model. Check out the following software packages that we recommend.
 
* Trimble (previously Google) Sketchup Make - [http://www.sketchup.com/products/sketchup-make]
**Skethcup STL Plugin - [http://extensions.sketchup.com/en/content/sketchup-stl]
*OpenSCAD - [http://openscad.org]
*Blender - [http://blender.org]
*Rhino3D - [https://www.rhino3d.com/6]
*OnShape - [https://www.onshape.com]
*FreeCAD - [https://www.freecadweb.org]
*Fusion360 - [https://www.autodesk.com/products/fusion-360/personal]
3D model database
*Yobi3D - [http://www.yobi3d.com Free 3D model search engine]
*Thingiverse - [http://www.thingiverse.com]
 
==File Types==
==='''''STL'''''===
The slicing software needs your 3D model as an STL file before it can slice it. Slicing produces a file that has GCODE to describe the tool head movements for each layer. It is important that your STL file only includes one solid water-tight object. Missing faces, open vertices, and improper normal calculations will cause the slicer software to produce errors. You can fix some of these issues in an automated fashion by using NetFabb Basic, Blender (recalculate normals), and MeshLab's repair mode.
====How to fix an STL====
You've got holes or inverted normals? You can fix this by hand, try Blender or Meshlab. For a quick fix either try netfabb basic on client or NetFabb cloud [http://cloud.netfabb.com/]. These can fix basic problems and possibly produce a better file. You need 1 shell, non-inverted normals, and no holes to get a good print.
 
The newest versions of Slic3r will automatically try to fix holes and other errors in your stl files. This can work, but make sure that your model hasn't changed dramatically before printing. Take a look at it in the 3d view.
 
You can also try these awesome pieces of software:
*MeshMixer
*MeshLab
*NetFabb Basic
*blender
 
==='''''GCODE'''''===
This is a description of the tool path that is generated by a slicer. The file includes commands which instruct the printer on how to move to produce the final object
==='''''S3G/X3G''''' ===
Replicatorg converts a GCODE file into this reduced and compressed file type. This is equivalent to the GCODE but the smaller and easier to parse file type can be read off an SD card with less work. Use the build to SD card function in Replicatorg to produce this file. It can also be created with Makerbot's software
 
==Jargon==
*Layer Height - The size of each layer the printer produces. This is limited at its maximum by the size of the nozzle and at its minimum by the amount of plastic produced and how much stretching occurs.
*Infill - The pattern and amount of plastic put inside the model to support it.
*Shells - The number of solid outer layers the model has
*Raft - A piece of plastic generated to stick to the print bed. This also includes support material for the object
*Filament - The plastic fed into the printer
*Extruder - The part responsible for filament melting and forming it into a continuous profile.
*Slic3r - Produces a GCODE file from an STL file
* Skeinforge - Produces a GCODE file from an STL file, built into Replicatorg
*Replicatorg - Produces a S3G file from GCODE and controls the printer
* OpenSCAD - 3D Solid Modeling software

Latest revision as of 05:35, 3 September 2024


Caution
Caution
This page is incomplete.

The content of this page is poor. Please expand the article to include additional information. If this page seems complete, consider removing this notice.


AHA currently has four 3D printers.

Ender 3 printers -

Ender 5 printer

All of the printers except Oscar are set up to print via OctoPrint. The links to access OctoPrint are available on each of the printers webpages. The Ender 3 printers all use the same PrusaSlicer config - File:PrusaSlicer config bundle.ini (Current as of 2023-12-13). The Ender 5 uses the profile File:Ender 5.ini. These profiles are installed on the dedicated 3D printing computer (located to the left of the 3D printers), but you may download these profiles and access OctoPrint from your own computer while in the space.

As of 2024-09-03, only Bert and Ernie are in service.

Operation

Prerequisites

You will need:

  • An STI file of what you'd like to print, or pre-sliced GCODE file using the proper printer profile on a slicer such as PrusaSlicer
  • Filament, or use one of our own.

Check printer is not in use

Ensure that nothing is currently being printed, and that the bed is clear.


Clean the bed

If the bed is not clean, you'll want to clear it off. If there is an existing print, carefully remove a print. This is likely another member's print, so please set it carefully aside and take note of where you put it so they can find it when they come to pick it up.

Remove existing filament from the printer

If you're content with the existing filament, you can skip the next two steps.

Pick a filament

We can print PLA and PETG filament types in our shop. We cannot print ABS as we do not have enclosures on our printers.

Load the filament

to be expanded

Level the bed

Begin the print

Watch the first few layers

Wait. And wait. And Wait.

Remove the print from the print bed

Remove and repackage the filament

Historical Content

NOTE: most of this information is out of date. I dumped class notes in here for the time being -- they are rough guidelines for how to run the machines, but they are missing a lot of details.

Notes from the 3D printer class:

History:

  • Not a new technology -- early 3d printers existed in the '80s.

Types of printing:

  • FDM (Fused Deposition Modeling) / FFF (Fused Filament Fabrication) -- "typical" 3d printers
  • SLA (stereolithography) / DLP (Digital Light Processing) -- i.e. resin printers
  • SLS (Selective Laser Sintering) / SLM (Selective Laser Melting) -- powdered materials melted with a laser. Can be used for metal parts; not consumer-level tech yet.

Software:

  • 3D models are saved in STL
  • Machines are controlled with GCODE
  • Slicers translate STL models into lines of GCODE
  • Cura, PrusaSlicer, Slic3r, Simplify3d are a few slicers
  • Lots of parameters you can tune or adjust. Most are beyond the scope of this class, or open to experimentation. However, some parameters will frequently be changed to fit your needs, such as brims/skirts/rafts, layer height, shell thickness, infill %, infill type, support materials, bed and nozzle temperatures, and feed rates.

Machine anatomy: go over the major parts

Filament types: go over some common materials

Machine operation:

  • Always clean the UNHEATED print bed of old filament bits and dust using a sturdy paper towel or clean, lint-free cloth with 90% isopropyl alcohol on it. Try to avoid touching the bed after you clean it.
  • Leveling the bed:
    • You will want to do this before every print.
    • Make sure bed is heated to printing temperature before leveling
    • One printer has a auto-leveling probe (untested), and the other one you will need to use the "paper method". (Demonstrate the paper method using the octoprint bed leveling helper plugin)
  • Loading filament:
    • Move print head a fair distance from the bed
    • Remove from the desiccant zipper bag. After removing the spool, always re-seal the bag to keep the desiccant packet as dry as possible.
    • Check the end of the filament when you pull it out of the bag. Make sure it's secured in the side of the spool. If it's not, you will need to try your best to ensure it isn't crossing under another loop to prevent a print failure.
    • Feed filament in from the top, push on the spring lever to allow it to be inserted easily. Continue to push the filament in until the color changes to the new filament's color, or you get a decent flow from the nozzle.
  • Printing:
    • Load the model you want, slice it, and send it to the printer
    • Carefully monitor the first layer or two to make sure it has good adhesion
    • First layer nozzle height should be close enough to slightly squish the extruded filament into an "oval" profile. It should not be too far away so as to drop it onto the bed, or so close that it flattens the filament entirely.
    • When the print is finished, wait until the bed has cooled completely before trying to remove it -- it should come off more easily when cool. Try to avoid scraping it off, which can gouge the bed.
  • Unloading filament:
    • Always unload and store filament in its desiccant zipper bag when you're done printing for the day. If left out, it will begin to absorb moisture from the air, which will cause it to become unusable over time.
    • Make sure the print head is heated to the working temperature.
    • Push the spring lever in and pull the filament out. If you encounter any resistance, make sure the nozzle is at the right temperature.
    • When unloading the filament, be sure to capture and tuck the loose end securely into the edge of the spool. If you let it flop loose, it's very likely that it will end up crossing under an adjacent loop, which will cause filament feed issues during its next use!
  • Finishing up:
    • Always ensure the nozzle heater, bed heater, and print cooling fan is turned off before leaving! The hot-end fan will always remain on.

Questions? Reach out to board@allhandsactive.org, #3dprinting or #Operations on Matrix.


As of 8/24/18:


Older/obsolete information follows, safe to ignore for the most part:

Creating a 3D Model

Lots of software exists to create models. As long as the software can export to STL file format, you can print your model. Check out the following software packages that we recommend.

  • Trimble (previously Google) Sketchup Make - [1]
    • Skethcup STL Plugin - [2]
  • OpenSCAD - [3]
  • Blender - [4]
  • Rhino3D - [5]
  • OnShape - [6]
  • FreeCAD - [7]
  • Fusion360 - [8]

3D model database

File Types

STL

The slicing software needs your 3D model as an STL file before it can slice it. Slicing produces a file that has GCODE to describe the tool head movements for each layer. It is important that your STL file only includes one solid water-tight object. Missing faces, open vertices, and improper normal calculations will cause the slicer software to produce errors. You can fix some of these issues in an automated fashion by using NetFabb Basic, Blender (recalculate normals), and MeshLab's repair mode.

How to fix an STL

You've got holes or inverted normals? You can fix this by hand, try Blender or Meshlab. For a quick fix either try netfabb basic on client or NetFabb cloud [10]. These can fix basic problems and possibly produce a better file. You need 1 shell, non-inverted normals, and no holes to get a good print.

The newest versions of Slic3r will automatically try to fix holes and other errors in your stl files. This can work, but make sure that your model hasn't changed dramatically before printing. Take a look at it in the 3d view.

You can also try these awesome pieces of software:

  • MeshMixer
  • MeshLab
  • NetFabb Basic
  • blender

GCODE

This is a description of the tool path that is generated by a slicer. The file includes commands which instruct the printer on how to move to produce the final object

S3G/X3G

Replicatorg converts a GCODE file into this reduced and compressed file type. This is equivalent to the GCODE but the smaller and easier to parse file type can be read off an SD card with less work. Use the build to SD card function in Replicatorg to produce this file. It can also be created with Makerbot's software

Jargon

  • Layer Height - The size of each layer the printer produces. This is limited at its maximum by the size of the nozzle and at its minimum by the amount of plastic produced and how much stretching occurs.
  • Infill - The pattern and amount of plastic put inside the model to support it.
  • Shells - The number of solid outer layers the model has
  • Raft - A piece of plastic generated to stick to the print bed. This also includes support material for the object
  • Filament - The plastic fed into the printer
  • Extruder - The part responsible for filament melting and forming it into a continuous profile.
  • Slic3r - Produces a GCODE file from an STL file
  • Skeinforge - Produces a GCODE file from an STL file, built into Replicatorg
  • Replicatorg - Produces a S3G file from GCODE and controls the printer
  • OpenSCAD - 3D Solid Modeling software